Search results for "trace operator"

showing 7 items of 7 documents

Trace Operators on Regular Trees

2020

Abstract We consider different notions of boundary traces for functions in Sobolev spaces defined on regular trees and show that the almost everywhere existence of these traces is independent of the chosen definition of a trace.

QA299.6-433Regular treeApplied Mathematics010102 general mathematicsnewtonian space01 natural sciencesAlgebraTrace (semiology)010104 statistics & probabilityregular treetrace operator31e0546e35potentiaaliteoriaGeometry and Topology0101 mathematicsfunktionaalianalyysiAnalysisTrace operatorMathematicsNewtonian space
researchProduct

Orlicz–Sobolev extensions and measure density condition

2010

Abstract We study the extension properties of Orlicz–Sobolev functions both in Euclidean spaces and in metric measure spaces equipped with a doubling measure. We show that a set E ⊂ R satisfying a measure density condition admits a bounded linear extension operator from the trace space W 1 , Ψ ( R n ) | E to W 1 , Ψ ( R n ) . Then we show that a domain, in which the Sobolev embedding theorem or a Poincare-type inequality holds, satisfies the measure density condition. It follows that the existence of a bounded, possibly non-linear extension operator or even the surjectivity of the trace operator implies the measure density condition and hence the existence of a bounded linear extension oper…

Discrete mathematicsTransverse measureComplete measureApplied MathematicsBounded functionComplex measureσ-finite measureMeasure (mathematics)AnalysisSobolev inequalityTrace operatorMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Explicit solutions for second-order operator differential equations with two boundary-value conditions. II

1992

AbstractBoundary-value problems for second-order operator differential equations with two boundary-value conditions are studied for the case where the companion operator is similar to a block-diagonal operator. This case is strictly more general than the one treated in an earlier paper, and it provides explicit closed-form solutions of boundary-value problem in terms of data without increasing the dimension of the problem.

Numerical AnalysisAlgebra and Number TheoryMathematical analysisSemi-elliptic operatorp-LaplacianOrder operatorDiscrete Mathematics and CombinatoricsBoundary value problemGeometry and TopologyC0-semigroupDifferential algebraic geometryTrace operatorNumerical partial differential equationsMathematicsLinear Algebra and its Applications
researchProduct

Lacunary bifurcation for operator equations and nonlinear boundary value problems on ℝN

1991

SynopsisWe consider nonlinear eigenvalue problems of the form Lu + F(u) = λu in a real Hilbert space, where L is a positive self-adjoint linear operator and F is a nonlinearity vanishing to higher order at u = 0. We suppose that there are gaps in the essential spectrum of L and use critical point theory for strongly indefinite functionals to derive conditions for the existence of non-zero solutions for λ belonging to such a gap, and for the bifurcation of such solutions from the line of trivial solutions at the boundary points of a gap. The abstract results are applied to the L2-theory of semilinear elliptic partial differential equations on ℝN. We obtain existence results for the general c…

Nonlinear systemElliptic partial differential equationGeneral MathematicsMathematical analysisEssential spectrumMathematicsofComputing_NUMERICALANALYSISBoundary value problemCompact operatorElliptic boundary value problemPoincaré–Steklov operatorMathematicsTrace operatorProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct

Sobolev embeddings, extensions and measure density condition

2008

AbstractThere are two main results in the paper. In the first one, Theorem 1, we prove that if the Sobolev embedding theorem holds in Ω, in any of all the possible cases, then Ω satisfies the measure density condition. The second main result, Theorem 5, provides several characterizations of the Wm,p-extension domains for 1<p<∞. As a corollary we prove that the property of being a W1,p-extension domain, 1<p⩽∞, is invariant under bi-Lipschitz mappings, Theorem 8.

Discrete mathematicsExtension operator010102 general mathematicsEberlein–Šmulian theoremMeasure density condition01 natural sciencesSobolev embeddingSobolev inequality010101 applied mathematicsSobolev spaceCorollarySobolev spaces0101 mathematicsInvariant (mathematics)AnalysisEdge-of-the-wedge theoremSobolev spaces for planar domainsMathematicsTrace operatorJournal of Functional Analysis
researchProduct

Ein Kriterium f�r die Approximierbarkeit von Funktionen aus sobolewschen R�umen durch glatte Funktionen

1981

The present paper provides a necessary and sufficient criterion for an element of a Sobolev space W k p (Ω) to be approximated in the Sobolev norm by Ck(En)-smooth functions. Here Ω is a bounded open set of n-dimensional Euclidean space En with convex closure $$\bar \Omega$$ and boundary ∂Ω having n-dimensional Lebesgue measure zero. No further boundary regularity (such as e.g. the segment property) is required.Our main tools are the Hardy-Littlewood maximal functions and a slightly strengthened version of a well-known extension theorem of Whitney.This work was inspired by and is very close in spirit to the pertinent parts of Calderon-Zygmund [6].

Mathematics::Functional AnalysisPure mathematicsLebesgue measureEuclidean spaceGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsOpen setSobolev spaceNorm (mathematics)Bounded functionMaximal functionMathematicsTrace operatorManuscripta Mathematica
researchProduct

Sobolev classes of Banach space-valued functions and quasiconformal mappings

2001

We give a definition for the class of Sobolev functions from a metric measure space into a Banach space. We give various characterizations of Sobolev classes and study the absolute continuity in measure of Sobolev mappings in the “borderline case”. We show under rather weak assumptions on the source space that quasisymmetric homeomorphisms belong to a Sobolev space of borderline degree; in particular, they are absolutely continuous. This leads to an analytic characterization of quasiconformal mappings between Ahlfors regular Loewner spaces akin to the classical Euclidean situation. As a consequence, we deduce that quasisymmetric maps respect the Cheeger differentials of Lipschitz functions …

Discrete mathematicsMathematics::Complex VariablesGeneral MathematicsEberlein–Šmulian theoremMathematics::Analysis of PDEsSobolev inequalitySobolev spaceMathematics::Metric GeometryBesov spaceInterpolation spaceBirnbaum–Orlicz spaceMetric differentialAnalysisMathematicsTrace operator
researchProduct